The name Vega comes from the Arabic word for "swooping eagle" or "vulture." Vega is the luminary of Lyra, the Harp, a small but prominent constellation that is home to the Ring Nebula (M57) and the star Epsilon Lyrae.
The ring is a luminous shell of gas resembling a smoke ring or a doughnut that was ejected from an old star. Epsilon Lyrae appears to the naked eye as a double star, but through a small telescope you can see that each of the two individual stars is itself a double! Epsilon Lyrae is popularly known as the "double double."
Vega is a hydrogen-burning dwarf star, 54 times as luminous and 1.5 times as massive as the Sun. At 25 light-years away, it is relatively close to us, shining with a magnitude of 0.03 in the night sky.
In 1984, a disk of cool gas surrounding Vega was discovered—the first of its kind—extending 70 AU from the star, roughly the distance from our Sun to the edge of the Kuiper Belt. This discovery's important because a similar disk is theorized to have played an integral role in planet development within our own solar system.
Astronomers also found a "hole" in the Vega disk, indicating the possibility that planets might have already coalesced and formed around the star. This led the astronomer and author Carl Sagan to choose Vega as the source of advanced alien radio transmissions in Contact, his first science-fiction novel. (In real life, no such transmissions have ever been detected.)
Together with the bright stars Altair and Deneb, Vega forms the popular Summer Triangle asterism that announces the beginning of summer in the northern hemisphere. The asterism crosses the hazy band of the Milky Way, which is split in two near Deneb by a large dust cloud called the Cygnus Rift.
This area of the sky is ideal for sweeping with binoculars of any size in dark-sky conditions.
Vega was the first star to be photographed, on the night of July 16, 1850, by the photographer J.A. Whipple. With the daguerreotype camera used at the time, he made an exposure of 100 seconds using a 15-inch refractor telescope at Harvard University. Fainter stars (those of second magnitude and dimmer) would not have registered at all using the technology of the time.
Vega used to be the North Star, but 12,000 years of Earth's precession has altered its place in the celestial sphere. In another 14,000 years, Vega will be the North Star again.